Bayesian Models of Data Streams with Hierarchical Power Priors
نویسندگان
چکیده
Making inferences from data streams is a pervasive problem in many modern data analysis applications. But it requires to address the problem of continuous model updating, and adapt to changes or drifts in the underlying data generating distribution. In this paper, we approach these problems from a Bayesian perspective covering general conjugate exponential models. Our proposal makes use of non-conjugate hierarchical priors to explicitly model temporal changes of the model parameters. We also derive a novel variational inference scheme which overcomes the use of non-conjugate priors while maintaining the computational efficiency of variational methods over conjugate models. The approach is validated on three real data sets over three latent variable models.
منابع مشابه
Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملRisk and Regret of Hierarchical Bayesian Learners
Common statistical practice has shown that the full power of Bayesian methods is not realized until hierarchical priors are used, as these allow for greater “robustness” and the ability to “share statistical strength.” Yet it is an ongoing challenge to provide a learning-theoretically sound formalism of such notions that: offers practical guidance concerning when and how best to utilize hierarc...
متن کاملLocation Reparameterization and Default Priors for Statistical Analysis
This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کامل